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Abstract. In this paper we show that the leading singularities of certain potentials 
can be determined from the leading singularities of the backscattering (as well as 
other determined sets of scattering data). The potentials in question are conormal 
with respect to smooth surfaces of arbitrary dimension; the restrictions on their 
orders allow for unbounded potentials in all dimension greater than or equal to 
three. 

O. Introduction 

Let q(x) be a real-valued, compactly supported potential on IR", n > 3, and 
a(2, 0, co), 2 ~ IR, 0, o9 E S "-1, the scattering amplitude of q(x). The nonlinear 
transform q ( x ) ~  a(2, O, o9) is overdetermined and there has been much interest in 
the inverse problem of determining q(x) from a(2, 0, o9) and the restrictions of a to 
subsets of IR x S n- 1 x S " -  1, e.g., [BC, ER, HN, No, N]. In this paper we will be 
interested in formally determined (n-dimensional) sets of scattering data; moreover, 
we will work in the time domain, i.e., with the scattering kernel, 

n - 1  

~(s, O, co) = c, S e~S~ 2 T a(2, 0, o9)d2 . 

The class of q's considered will be those conormal to a smooth submanifold S ~ IR" 
of arbitrary codimension k. The inverse problem solved consists in determining 
S and the symbol of q(x) from the leading singularities of the scattering data. The 
strongest singularity of the full scattering kernel ct(s, 0, o9) is of course the peak 
scattering; we show that for the class of potentials considered here, ~(s, 0, o9) is, 
away from the contribution of the tangential rays, a sum of the peak scattering and 
a (weaker) lagrangian distribution associated with a reflected lagrangian 

_ c T*(IR x S " - l x  S"-1). It is the restriction of this reflected component of 
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a(s, 0, co) to various n-dimensional submanifolds of IR x S " - ~ x  S"- t which we 
show determines S and the symbol of q at S. 

A particularly interesting case of our results is that of q(x) having a Heaviside- 
type singularity across a smooth hypersurface; the location and size of the jump can 
then be determined from ~ [~, where 113 is the backscattering data, 

= {(s ,  O, co): 0 = - c o } .  

More precisely, we prove the following; a more detailed statement, as well as the 
extension to other, possibly time-dependent sets of scattering data, can be found in 
Sect. 4. 

Theorem 0.1. Let S c IR ~ be smooth of codimension k and q(x) conormal of order # to 
S, with 

/ ~ < - m a x (  (n-2)n k , k - 1 ) ,  n > 5  and 

# < - m a x  , k - 1  , n - - 3 , 4 .  

Then S and the principal symbol of q(x) are determined by the singularities of the 
backscattering a ]~. 

The restriction that the order of q(x) be less than n - 2 k or - k/2, respec- 
n 

tively, insures that the scattering kernel is defined ([P]); the restriction # < 1 - k is 
needed so that the operator [] - 1Mq considered in the proof is slightly smoothing. 

Working in the frequency domain (i.e., with a(2, 0, co)), Prosser [Pr] gave 
a formal procedure to determine q(x) from backscattering under a small norm 
assumption. In Eskin and Ralston [ER], the map from complex q to the backscat- 
tering was shown to be generically a local homeomorphism with respect to certain 
norms. Note that in the theorem, although q(x) belongs to a rather special class, 
there is no smallness assumption. Only the leading singularities of q(x) are de- 
termined by a ] ~, but only the leading singularities of a [ B are needed to do this. 
(After the completion of this paper, J. Ralston brought to our attention the related 
paper of P/iiv/irinta and Somersalo [P/iS], which treats the question of recovering 
the singularities of the potential from the scattering amplitude as a function of all 
its variables. Their results are from the point of view of the Born approximation, 
rather than the time-domain approach taken here.) 

The method of proof we use is to construct an approximate solution to the 
direct problem 

(N + q(x))u(x, t) = 0 on IR "+1 

u(x , t )=6(t - -x 'co) ,  t ~O . 

It follows from the Lax-Phillips approach to scattering theory [LP, MU2] that 
~(s, 0, co) can be expressed in terms of u(x, t), cf. (3.34). It is crucial for our approach 
to incorporate the parameter co as one of the independent variables. We construct 
an approximate solution u ~ Uo + ul, with Uo = cS(t - x'co). Away from the tan- 
gential rays, ul is a sum of the product-type lagrangian distributions; for t >> 0, it is 
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a sum of two lagrangian distributions, from which we find that, away from a small 
bad set, 

1 ^ k 5 ^ 

ct �9 IZ(A+) + I ~ + ~ - ~ ( A _ ) ,  

where A+, A_ c T * ( I R x S " - I  x S "-1) are the peak and reflected lagrangians, 
respectively. From this, the solution of the inverse problem follows easily. In Sect. 1 
we recall and establish some basic results concerning classical and product-type 
conormal and lagrangian distributions. The action of operators such as [] - 1 on 
such classes is considered in Sect. 2 under various geometric assumptions. The first 
two terms of an approximate solution to the direct problem are constructed in 
Sect. 3; the analysis of the higher terms seems to be considerably more intricate and 
may only be possible under a strict convexity assumption on S; we hope to return 
to this point in the future. Finally, in Sect. 4, the approximate solution to the direct 
problem is used to solve the inverse problem. 

Much of this work was completed while the first author was on leave at the 
University of Washington; he would like to thank that institution for its hospitality 
and support. 

I. Spaces of Lagrangian Distributions 

In this section we recall the spaces of conormal distributions and distributions 
associated with either a single lagrangian or two cleanly intersecting lagrangian 
manifolds. 

Let X be an n-dimensional smooth manifold, and A c T * X \ O  a conic lagran- 
gian manifold. The H6rmander space I " ( A )  of lagrangian distributions on X asso- 
ciated with A consists [H6] of all locally finite sums of distributions of the form 

u(x) = ~. ei~'(x'~ O)dO , 
A N 

where ~b(x, O) is a nondegenerate phase function parametrizing A and 

a e sm+~-~(X X IRN\O) = {a �9 C ~ ( X  • (IRN\O)): 

I~Oga(x, 0)1 < C~,aK(O) '~+~-~-I~'1 , 

W �9 2ZN+,fl �9 7/~+,x �9 K ~ X }  . 

(Here we use the standard notation ( 0 )  = (1 + 1012)&,) For u �9 Ira(A), the wave- 
front set WF(u) c A. 

Now let S c X be a smooth submanifold of codimension k. Then the conormal 
bundle of S, 

N * S  = {(x, 4) �9 T*X\O:  x �9 S, ~.L TxS}  , 

is a lagrangian submanifold of T*X \ O; the space of distributions on X conormal to 
S is by definition 

I"(S)  = I"+�89 . (1.1) 
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If h ~ C~ IRk) is a defining function for S, with rank (dh)= k at S, then 
u(x) ~ Iu(S) 

u(x) = ~ elh(x)'~ O)dO, a ~ Su(X x (IRk\0)). (1.2) 

For example, if 6s is a smooth density on S, then 6s ~ 1~ (S), while a distribution on 
X \ S  having a Heaviside-type singularity at S belongs to I-k(s). One easily sees 
that 

1 1 \  
Iu(S) ~ L~o~(X) i f # <  - k ~ l - p ) .  (1.3) 

Now, let Ao, A~ ~ T*X \O  be a cleanly intersecting pair of lagrangians in the 
sense of [M Ul l .  Thus, S = Ao n AI is smooth and 

T~oZ = T~oA oc~ T~oAi, V 2 o ~ Z .  

Associated to the pair (Ao, A1) is a class of lagrangian distributions, IVd(Ao, A1), 
indexed by p, l ~ IR, which satisfy WF(u) ~ Ao w Ai [MU1, GuU].  Microlocally, 
away from ~, 

II"t(Ao, Ai) ~ IP+l(Ao\Ai) and IV'l(Ao, Ax) ~ IV(A1). (1.4) 

If Y2 = Y~ = X are smooth submanifolds with codimx(Y~) = d~, 
codimx(Y2) = da + d2, then N* Ya and N* Y2 intersect cleanly in codimension d2. 
The space of distributions on X conormal to the pair ( YI, I:2 ) of orders #,/~' is 

d~ + d2 n d2 

IU, u ' ( y ~ , y z ) = I  ~+u'+ 2 4' 2-U'(N*Y~,U*Y2) 

d i n , d 2 

= I "+~ 4'" + 2(N*Y2,  N*Y1) .  

If one introduces local coordinates (x~ . . . . .  x,) on X such that 

r '  = { ~  . . . . .  ~ = 0} = { w =  0} 

and 

::2 = {~1 . . . .  = ~,~ +,2 = 0} = { w  = 0. ~ "  = 0 } .  

then u(x) ~ IU'u'(Y1, Y2) iff it can be written locally as 

u(x) = d!+. ei{x"~'+x"'e")a(x; 4'; ~")d4' d~" 

with a(x; 4'; 4") belongs to the product-type symbol class 

SU'u' (X x (IRdl\O) X IRa2) = {a ~ COO: [O~O~,,O~,a(x, ~)l 

=< c~<4', U>"-I~I<U> ~'-Ipl} . 

We will need the following 
conormal distributions. 

(1.5) 

(1.6) 

series of lemmas concerning multiplication of 
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Lemma 1.1. I f  Y, Z ~ X are submanifolds with Y d3 Z, then 

P ' (Y) . Iu ' (Z)  ~ I"'u'(Y, Y ~ Z) + IU"u(Z, Y c ~ Z ) .  

I f  u e I"( Y) satisfies: supp(u) c Y, then 

u . I" '  (Z) ~ Iu,u'(Y, Yc~Z)  . 

(1.7) 

while 

Proof If Yc~ Z = O, there is nothing to prove, since I"'"'(Y, Yc~ Z) ~ I"(Y) and 
Ir  Yc~ Z) ~ I"'(Z). If Yc~ Z 4= O, let x ~ �9 Yc~ Z and introduce local coordin- 
ates (x', x", x ' " ) �9  "-d~-d~ near x ~ such that a) x ~  b) 
Y =  { x ' =  O} and c) Z = {x"=  0}. If u(x ) �9  Iu(Y), u has the local oscillatory 
representation 

so that 

u(x) = ~ eiX"e'a(x; r  a �9 S " ( X x ( I R e ' \ 0 ) ) ,  
Rdl 

and v(x) �9 I"'(Z) has the representation 

v(x) = ~ ei="'r r b �9 S"'(X x(lRa=\o)), 
Ra2 

(uv)(x) = ~ ei(X"e' +x'"e") a(x; r ~")dr dr . 
Ral+d2 

Introduce a cutoff function Z(t) �9 C~~ Z - 1 for ]tl < �89 X - 0 for It] > 1. Then 

( ( r  a(x; r ~") �9 SU'u'(X x (IR d~ \ 0 ) x  lRd~), z\(r 

( (~")  ) a  x" ~") ( l - z )  ~ ( , r �9  xlRd');  

making the corresponding decomposition of u. v yield (1.7). 
If supp(u)c  Y, then by [H6], WF(uv)c  N * Y w N * ( Y n Z ) ,  so that in the 

above decomposition the second term belongs to I"+"'( Y c~ Z) c I",u'(Y, Yc~ Z), 
yielding (1.8). Q.E.D. 

We also need the multiplicative properties of conormal distributions associated 
with a nested pair of submanifolds. Related results for a single submanifold are in 
[Pi]. 

Lemma 1.2. I f  Y1 ~ Y2 are submanifolds of  X of codimensions dl, dl + d2, respec- 
tively, Ul �9 IMI(Y1), and u2 �9 IM2(IrE) is microlocally supported away from N* Y1, 
then 

UlUa �9 IM"M"(Y1,  Y2), M '  = (ml + d l ) +  - d l  + Sfm~,-d~ , 

M" = m 2 --k dl, any e > 0 .  (1.9) 

(1.8) 
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Proof  Int roducing on X local coordinates x = (x', x", x '")  as discussed above 
(1.5), we have oscillatory representations 

u~(x) = ~ e~"r ', a e sM'(Xx(IRd~\0))  (1.10) 
~dt 

and 

u2(x) = ~ e"~"r162162 ", b ~ Sm2(X• (1.11) 
~a ,+d2  

with supp(b) r (14'1 ~ clUI}. Thus, 

(u~u2)(x) = ~ (a , 'b)(x;  ~', ~")d~'d~", 
~t~d~ +d2 

where a * 'b is the partial  convolut ion 

(1.12) 

a*'b(x;  ~', ~") = ~ a(x; q')b(x; ~' - ~/', ~")dr/' .  (1.12) 

where a * ' b  is the partial convolut ion 

a , 'b (x ;  ~'. ~") = ~ a(x;q')b(x; ~' - ~f, ~")drf . (1.13) 
F,  'h 

To estimate the size of a *' b(x; ~', 4), where 14'1 ~ c lUI, note  that  

[ a , ' b ( x ; ~ ' , U ) l < = c ( ~ ' >  m* ~ ( ~ " ) ~ : d q ' < = c ( ~ , ~ ' ) ~ ( 4 " ) ' ~ + a ' .  (1.14) 
I~'- ~'1 =< clUI 

On the other  hand, if [ ~'l < c l ~"l, 

[ a * ' b ( x ; 4 ' . ~ ' ) l < - e ( ~ " )  m2 ~ Of ) '~ ldr f  ~c(~") (m'+dl)+ +m2+efi .~1.-al  
i,'l __< cl~"i 

(1.15) 

for any e > 0. Thus, a* 'b  satisfies the correct  size estimate to belong to 
s M " M ' ( x  X (IR dl \0) x IRa'), with M',  M "  as in (1.9). A derivative in 4', ~ , ( a  *' b), can 
be represented as either (~r a) *' b or a *' ~r b). In the region J ~'[ => c[ 4"[ }, we use 
(3~,a ~ S m'-I~l and (1.14) to get a gain of (~,>-J~l as long as [a[ __< ml + dl; for 
[a[ > ml + d~, we integrate by parts [~[ - ml - d~ times and then apply (1.14) to 

t . a m 2  lal obtain the desired gain. On { [ ~ [ < c l r I }, we use dr ~ S - and (1.15) to obtain 
the gain of (~")-I~t  = (~,, ~,,)-r~l. A derivative 0~,., however, can only be distrib- 
uted to b(x; ~', ~"), lowering m2 to m2 - ]fl[ and consequently yielding a gain of 
only ( 4 " )  -r~l. Thus, a *'b e S M''M'' (X x (]Rd'\0) x IR a~) and U l U  2 ~ IM"M"(Y1, ]12) 

by (1.5): Q.E.D. 

If u2 is microlocally supported near N*Y~ ,  we have a similar result. 

Lemma 1.3. I f  Y1, Y2 and ul (x) are as above, and u2 ~ ImP(Y2) has amplitude 
b(x; ~', ~") supported in {l~"l < cl4'l}, then 

u l u 2 e I  . . . .  ~+d~(Y1, Y e ) , m 2 <  - - d a ,  m l + m 2 <  - d a .  (1.16) 



Recovering Singularities of a Potential 555 

Proof We repeat the calculations of the previous proof, except that in (1.13), the 
integral is over {l~' - q'[ > c[~"l}. Thus, on {lr > cl~"[}, 

la* 'b(x;~ ' ,U)[<e<~'> z' ~ <if, U>z~ dff < <~'>z' (u>m~+n' 
Iffl > cW'l 

if m2 + d l <  0, while on {l~'l _-_ IUI}, 
la*'b(x; ~', ~")1 < S <11'>"'+Z~dq'zc<~"> z~+z=+dx, ml + m2 + di < O. 

I,/'1 >_- clUI 

Q.E.D. 

We also will need the action of I m'(Yt) on spaces of product-type conormal 
distributions. 

Lemma 1.4. I f  Yi, Y2 are as above, Ui EIm~(yi), and U2EIM"M"(Y1, Y2) is sup- 
ported microlocally near N* Y1, with M' < -- dl, M'  <= ml, then 

UiU2EI~I"M" (Y1, Y2), )~ '  -- max((ma + d l ) +  + M'  + et~z,,_dl,mi), and e > 0.  

(1.17) 

Proof We again have the oscillatory representation (1.12) of u l u2 with a *'b given 
by (1.13) for a e S z~(X x (IRa'\0)) but now b ~ S M''M''(X x (IR d' \0) • p.a~); thus, 
[a(x; ~')[ < c<~') ml and Ib(x; ~', U)I < C<~t)M'<~t') M''. For I~'1 < clUI, 

[a*'b(x;~' ,U)l <=c ~. <tf>m'<~'--rf>M'<~">M"dtf 
I~ '  - ~t'l _-> cl ~"1 

<c<~"> M'' I <'7'>"'+M'd'f 
I~'1 ->_ c[~"l 

~C<~'t) zl+M'+M''+d' i f m i + M ' < - d l .  (1.18) 

If I~'l => c[~"], we use the first inequality in (1.18) and then decompose the integral 
into three pieces, corresponding to the regions I = {QI') =< c(~ ' )} ,  
II = {c<~") < (v/') < c (~ ' )}  and I I I =  {<~' - q ')  > c(~")} we have 

I ~ C<~'>M'<~'t>M"I<~'>mld~' ~ C<~'>(ml+dl)+M'+e6<~t'>m' (1.19) 
I I 

where 6 = 6z1,-d, and ~ > 0 is arbitrary, 

S < C<~">M"(<~')M'S < tf>m'dq' -4- <~,>m,~ <~f)M" dq'~ 
II \ II II / 

< c<~,>M"(<~,>M'max(<~,>ml+ai+el, <~,>ml+al+~,~) 

+ <~'>m'max(<U> M''+a', <c>M'+d')) 

~c<~'>z,<u>"+~"+d,,  
< [cmax((~,>M,(~,,>z,+M..+d,, <~'>Z~(~">M'IM"+dO, 

= < c(~'><~"> M'+M''+e' i fml = > M'  , (1.20) 

ml + d i  > 0  

ml + d l  < 0  
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<--C~ (rf)m~+M'(4")M"drf ~c(4')m~+M'+aa(4")M". (1.21) 
II1 III 

Since (mr + dl) q- ~6 ~ ma + dl, the third term is dominated by the first; on the 
other hand, since M'  + da < 0, the second term is dominated by c(4 ' )m~(4")  M''. 
Thus, on {14'1 _-> elUI}, 

la*'b(x; ~', 4")1 =< c ( ~ ' ) ~ ' ( ~ " )  M''. (1.22) 

The estimates (1.18) and (1.22) together imply the size estimate satisfied by an 
amplitude belonging to S ~''M''. As before, ~ ,  can be distributed to either a or b, 
while a~,, must be applied to b, yielding the required estimate 

[GO~,,O~,(a*'b)l = c(r ~,,)~t'-I~l(~,,)M"-Ial, 

so that UlU 2 e I'gI"'M" (Y1, Y2). Q.E.D. 

Finally, we have 

Lemma 1.5. Let Y1 ~ Y2 be as above, and Y+ ~ X such that Y1 ~ Y+ with 
YI ~ Y+ = Y2. Let Ul ~ I'~x(Y1), and u: ~ IM"M"(Y+, Y2) be supported micro- 
locally near N* Y+. Then, 

UlU 2 e IM"~I"'(Y+, I12) + i~ ' ,O(y+,  Y2) + I . . . .  ~(Y~, I12), (1.23) 

where M " = M "  + (ml + dl)+ + e6m,,-a~, M' = M'  + (ml + M" + da)+ "~-I~(~m,+M", -dl ,  
and m2 = M'  + (M" +dl)+ + e6M,,,-d,, any ~ > O. 

Proof We may choose the local coordinates x = (x', x", x'") so that Y1 = {x' = 0}, 
Y+ = {x" = 0}, and Y2 = {x' = 0, x" = 0}. Ux(X) is given by (1.10) while 

ua(x) = ~ eW"'r162 4", ~')d4'd~", 
~Dx.dl --d2 

b e SM"M"(X • (]Rd~\O) X F.) 

(1.24) 

with supp (b )c  (IUI ~ clCI}. (Note that ~" plays the role of the "elliptic" vari- 
able.) The product (ul,u2)(x) is again represented by (1.12), with 

a*'b(x; ~1, 42) = ~ a(x; 4' - ~/')b(x; r q')dq' . 

It suffices to show that 

a *'b ~ SM"~"(X X (lRa2\O) x IR al) + s~r '~ x (1Ra2\O) x lRdl){]4' [ < elUI} 

(1.25) 

while 

a . ' b  e S . . . .  2(X •215 a2) on{14"15c1~'1}. (1.26) 



Recover ing  Singulari t ies  of  a Po ten t ia l  557 

Where I ~"1 < c[ ~'1, one has 

la* 'b(x;~ ' ,~")[~c  [. (~t--l'lt)ml(l'lt,~tt)M'(l']t)M"dl~t 
I,fl < clUI 

__< c(~,)~1(~, , )  ~,' ~ ( . ' )M"dn '  
Iffl_-< c1r 

<c(~')>"~(r M'+~M''+a~)++~''',-",, a n y ~ > 0 ,  (1.27) 

which is the correct size estimate for (1.26). Applying ~ ,  to the the first factor in 
a *' b, we lower m~ by I~1 and obtain a gain of (4 ' )  -I~t ..~ (r ~,, )-I~1, while gr must 
be applied to the second factor, resulting in a gain of only (~")-IPl. Thus, (1.26) 
holds. As for (1.25), on {IUI > cl~'l}, we have 

la*'b(x;r  = ~ a(x ;r162  
Iffl --< c1r 

C I ( l " ] " )m l+M"(~n)M'd~] t  

Iffl_-< cW'l 

-}- C I 1 ~ (~' -- t f )ml(~")M'(~')M"dq'  
I~'-ffl-<_~l 'l 

C ( ~ , , ) M ' + ( m l + M " + d l ) +  +eg~ . . . .  ,,, a, 

+ C(~")M'(~') M''+r +~"~-"' , (1.28) 

which is the correct size estimate for (1.25). The desired gain of (4")-IPl from the 
application of ~,,  follows, since M'  is lowered by Ifl I. As in the proof of Lemma 1.2, 
the gain of (~,)-I,I from O~, follows by lowering M" to M " - I ~ ]  if 
ml + M" > - d~; otherwise one integrates by parts first. Thus, (1.25) holds and 
the lemma is proved. Q.E.D. 

2. Action of Parametrices on Distribution Spaces 

We now consider the mapping properties of a parametrix for a pseudodifferential 
operator of real principal type, acting on the spaces of distributions associated with 
one and two lagrangians described in Sect. 1. The intended application in Sect. 3 is 
to the d'Alembertian on IR"+I x S "-1, but the natural coordinates there do not 
seem convenient for establishing these results, leading us to formulate and prove 
them in the generality described below. 

Let P(x, D) be an mth order classical ~/DO, with real homogeneous principal 
symbol pro(X, ~). Recall that P is of real principal type if a) dpm ~ 0 at 
char(P) = {(x, ~) ~ T ' X \ 0 :  p,,(x, ~) = 0} so that char(P) is smooth, and b) char(P) 
has no characteristics trapped over a compact set of X. Then P(x, D) is locally 
solvable and parametrices for P(x, D) were constructed in [-DH, MU1]. For 
(x, 4) ~ char (P), let ~(x,~) be the bicharacteristic of P(x, D) (i.e., integral curve of 
H ~ )  through (x, 4). Then the flowout canonical relation generated by char (P), 

Av = {(x, 4; Y, q): (x, 4) e char(P), (y, q) e ~(x,~)} , 
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intersects the diagonal AT, X cleanly in codimension 1. In [MU 1], it was shown that 
1 1 

P(x, D) has a parametrix Q e I ~-m' -~(Ar*x, Ap). 

Propos i t ion  2.1. Suppose Ao ~ T*X\O is a conic lagrangian intersecting char(P) 
transversally and such that each bieharacteristics of P intersects Ao a finite number of 
times. Then, if T ~ IP'I(AT,x, Ae), 

T: Y(Ao) ~ U+P'~(Ao, A~), (2.1) 

where A1 
AI \Ao,  

= Ae o Ao is the flowout from A on char (P). Furthermore, for (x, ~) 

a(Tu)(x ,  ~) = E o-(T)(x, ~; yj, t/j)tT(u)(yj, t / j ) ,  (2.2) 
J 

where {(yj, t/j)} = Ao c~ Etx,r 

Proof Microlocalizing and conjugating by an elliptic Fourier integral operator 
associated with a canonical transformation, we can assume [MU1] that X = IR" 
with coordinates x = (xl, x'), Ao" = T*IR"\0, char(P) = {(x, ~): ~1 = 0} and thus 

A1 = {(xl, 0;0, ~'): xl e JR, ~' ~ IR"-I \0} .  

A distribution u ~ Ir(Ao) has the representation 

u(x) = S eiX'r x; ~)d~, a ~ Sr-~(lRn• (lRn\0)), (2.3) 
R" 

and T ~ IP'l(Ar.~., A,) has the form 

Tf (x )=  ~ ei<X-Y)'~ 

b E S 9+~' t-~(lR2" x (1R n-  ~ \0 )  x ]R) .  (2.4) 

Note that on A e \ A r , r r  , T is a Fourier integral operator associated with Ae, 

Tf(x) = [. e i(~'-r')'~ y; O')f(y) dO' dy , (2.5) 

where, for xl ~ Yl, 
1 

c(x, y; 0') = ~eitx'-r')~ y; 0'; 01)dO1 ~ SP+2(IR- 2n X (JR n -  1 \ 0 ) )  . (2.6) 

Now, applying T from (2.4) to u(y), and applying stationary phase in y, ~ ,  0', we 
obtain, upon relabelling 01 by ~1, 

. Tu(x)= ~ e*~'r162 (2.7) 
R ~  

1 n 1 

The amplitude in (2.7) is easily seen to belong to S r+p+~-~" l-~ (]R" • (JR"- ~ \0) x ]R); 

by [GU, w Tue lp" r (Ao ,  A1), with p ' + l ' - ~ = r + p + ~ - - ~ + l - ~ n  1 n 1 and 

1 n l n 
p' + ~ - ~ = r  + p + ~ - ~ , s o  that p ' = r  + p , l ' = l .  
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To calculate the symbol of Tu on AI\Ao, we expand the amplitude a in (2.7) 
about ~ = 0: 

Tu(x) = ~ eix'r x'); (0, r (0, x'); ~'; ~1) + ~ld(x; ~'; ~ l ) ]d ~ ,  (2.8) 

where d(x; ~'; ~1) ~ S "+p -�89 --L i-~ (IR" x (IR"- 1 \0) x R). The first term in (2.8) can be 
written as 

S eix"~'a((O,x');(O,~'))[ [,e~'r ~ ' ; ~ ) d ~ l d ~ ' ,  
R "  1 ~ .  

which for x~ :~ 0 is an element of Y+P(A~)) with symbol as in (2.2); the second term 
is in I ~+p- a(Aa \Ao) and thus does not contribute to the principal symbol. Q.E.D. 

Finally, we deal with the action of lP'Z(Ar.x, Ap) on the double intersection 
class IP"U (Ao, A1). 

Proposition 2.2. Under the same assumptions as Proposition 2.1, 

! , 1 

T: IP"t'(Ao, A1) ~ I p+v'+~'t+z -~(Ao, A1) �9 (2.9) 

Thus, if Q is a parametrix for P(x, D), 

Q: I""t'(Ao, A1) ~ I "'+ ~-m.l'-~(Ao, A~). (2.10) 

Proof. We argue as in the proof of Proposition 2.1, but now u~IP"V(Ao, A~)=~ 

u(x) = ~ e~'r ~'; ~l)d~, a~S"'+�89189 (2.11) 
R .  

so that instead of (2.7) we have 

Tu(x) = ~ ei~ee(x; r ~1)dr eeS ~+p'+IG, ~+t'-l(lR" x (IR"-*\0) x R ) ,  (2.12) 
R n  

so that TueI  v+~'+�89 t+e-�89 Aa). For the parametrix Q, we specialize this to 
p = �89 - m, l = - �89 yielding (2.10). Q.E.D. 

Finally, we need 

Proposition 2.3. Suppose Aa = T*X\O is a conic lagrangian which is characteristic 
for P: A1 =char(P).  Then, if Telp't(AT.x, Ap), 

1 

T: I'(A1) --+ I"+~+~(Aa), (2.13) 

and thus 

Q: Ir(Aa) ~ I r+ l -re(A1). (2.14) 

Proof. Microlocalizing, we can find a Ao such that (A0, A1) are as in Proposi- 
tion 2.2. For each l'~lR, Ir(A~)=Ir't'(Ao, A1) ( [GuU]) ,  which is mapped by T t o  

U +p+�89189 (Ao, A1) by (3.9). Intersecting over all l ' ~R ,  we have T: I"(A1) 
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1 , 1 1 

NI'aP. Ir+P+7'l +l-7(Ao' AI) = lr+P+~(A~), again by the results of [GuU], proving 
i 1 

(2.13). Since Q e I ~-m' -~ (Ar*x ,  Av) ,  (2.14) follows. Q.E.D. 

3. Plane Wave Ansatz for the Direct Problem 

We now analyze the approximate solution, Uo + ul, to the direct problem de- 
scribed in the Introduction, under the assumption that the potential q(x) is 
conormal to a smooth codimension k submanifold. Let S be given by a defining 
function, 

S = {x ~ lR":h (x) = 0},  (3.1) 

where h s C~176 ", IR k) satisfies r a n k ( d h ( x ) )  = k for x s S; in addition we assume 
S has compact closure. Let 

{ i < -  m a x ( ( 1 - ~ ) k ,  
q(x)  e I"(S) ,  

k _ 1), r/ => 5 

n = 3  o r 4  

(3.2) 

n 
be compactly supported and real-valued. Since, by (1.3), q e Lv(N"), for p = ~ for 

n > 5 and p > 2, n -- 3 or 4, it follows from a theorem of Phillips [P] that the 
scattering kernel a(s, 0, co) of q(x)  exists; furthermore, the representation (3.34) 
below is valid. 

Now define 

$1 = {(x, t, co) e 11t "-1 x S"-1: x e S} ; (3.3) 

regarding q(x)  as a distribution on F,."-1 x S"-1 independent of t and co, one has 

q e I " ( $ 1 ) .  (3.4) 

We wish to find an approximation solution to the problem 

{([] + q ( x ) ) u ( x , t ,  c o ) = O  on I R " - l x S  "-1 
u(x,  t, co) = ~(t - x .  co), t ~ O, (3.5) 

~2 
where [] = ~ - Aa. is the d'Alembertian on IR" + 1 acting independently of co. We 

look for an approximation 

U ~ U o + U l +  " ' "  + u ~ +  " ' ' ,  

where Uo(X, t, co) = 6(t  - x .  co) and such that the series on the right is (formally) 
telescoping when [] + q is applied. Thus uj+~ = - [ ] - l ( q ( x ) u j ( x ,  t, co)), where 
[ ] -  ~ is (say) the forward fundamental solution of •. For the purposes of this 
paper, it suffices to consider the first two terms, 

Uo + ul = 6(t  - x . co )  - [ ] - l ( q ( x ) 6 ( t  - x . c o ) ) .  (3.6) 
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Now,  the leading term in (3.6) is 

Uo(X, t, co) = ~(t - x.co) e I~  + ) , 

where 

561 

(3.7) 

q(x, t ) ' 6 ( t  -- x.co) ~ I~ S2) ,  

W F ( q . 6 )  c A+ u A 2 .  (3.9) 

To  obtain  WF(ut) ,  recall that  

W F ( [ ~ - t v ) = ( A ~ A c j ) o W F ( v ) ,  Vv ~ d~'(lR"+t x S " - t ) ,  (3.10) 

where A is the diagonal  of T*(IR "+1 x S " - t ) \ 0  and A[] is the f lowout of the 
characterist ic variety 

c h a r ( D )  = {(x, t, co; 4, z, ~2): I~l 2 = [~]2} (3.11) 

of  [] (acting on IR" + t x S ~- t). In (3.10), d w A [] acts as a relation between subsets 
of  T*(F," + t x S ~- t ) \0 ;  if course, A acts as the identity. Also, A o ~ A + = A + since 
A + is characteristic for []. Thus 

WF(u t )  ~ A+ w A 2 w A~ ~  2 . (3.12) 

To  unders tand the last term in (3.12), note that  A 2 is a (k + 1)-plane over  $2: 

A2 = {(x, x.co, co; v -- zco, z, -- zi*x): x e S, co e S "-1, (v, z) e ( N * S  x IR)\0} , 

(3.13) 

(3.8) 

so that  

S +  : {(x,  t, (D) E ]R n + l  x S n - l :  t - x ' o )  = 0} . 

The submanifolds S+ and St intersect transversally; let S2 = S+ c~S1 be the 
resulting codimension k +  1 submanifold  at I R " + l x S  " - t .  Let At  = N ' S t ,  
A+ = N ' S +  and A2 = N ' S 2  be the respective conormal  bundles, which, as 
described in Sect. 1, are lagrangian submanifolds of  T*(IR" + t x S ~- t ) \0 .  

Proposition 3.1. a) WF(q)  c A t  and WF(uo) c A+. 
b) A and A + are disjoint. 
c) A2 intersects A t  and A+ cleanly in codimensions 1 and k, respectively, so that 

(At,  A 2) and (A+, A 2) are intersecting pairs. 

Proof. a) Fol lows f rom (1.1). 
b) N~x,t,,o, St = {(dh*(~), O, 0): ~ ~ IRk\O} while N(*,,,,o)S+ = {( - trco, a, - ai*x): 
a e IRk0}, where ion: T~oS"- t ~ ToflR". 
c) Follows f rom the fact that  $2 c St is codimension 1 and $2 = S+ is codimension 

k. Q.E.D. 

The second te rm in (3.6) is 

ul = - [ ] - t ( q ( x ,  t ) f ( t  - x.co)) , 

where [] - t acts only in the (x, t) variables. By L e m m a  (1.1), with X = IR "+ i x S" -  t, 
Y =  S+ and Z = $1, 
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where i* denotes  the restriction of an element of IR"* to To,S"-1. The intersection of 
As with char  (D)  in these coordinates  is given by 

2;  = A 2 n char(E3) = { v . ( v  - 2zco) = 0} . (3.14) 

Above  a point  (x, x.co, co) �9 S 2 such that  N * S  c co • the fiber o fA2  n c h a r ( D )  is 
just  { ( -  zco, z, - z i * x ) :  z �9 IR\0},  while if N * S r  • the fiber is a smooth  
k-dimensional  cone in T* ~ ,  + 1 S n-  1 ~( . . . . . .  o,),~,, x \0.  Since N * S  c co • iff co �9 TxS,  we 
see that  the degenerate  points  correspond to the incoming plane wave being 
tangent  to S. Let  

S3 = {(x, x.co, co) �9 S2:co �9 T~S} (3.15) 

then $3 c S 2 is codimension k and  away  f rom 2;3 = A2 Is3, 2; is a smooth  hypersur-  
face in A2. 

To  discuss the geomet ry  further, we first consider  the si tuation when S is 
a hypersurface (k = 1), so that  h(x)  is scalar-valued with gradient  h~, and (3.13) m a y  
be rewrit ten as 

A2 = {(x, x.co, co; 2hx - zoo, z, - z i*x ) ;  x �9 S, (2, z) �9 11t2\0}. (3.16) 

In these coordinates,  

As c~ char  (E3) = {2(h~2 - 2(09. hx)z)  = 0},  

and thus 2; = 2;+ w Z _ ,  where 2;+ = {2 = 0} and 2;_ = {h22 - 2(0). hx)z  = 0} are 
smoo th  hypersurfaces intersecting transversally over  $3 = {co. hx = 0}. Note  that  
27+ = A + c~ As and thus the f lowout  A[] o (2;+ \2;3) of  27+ \273 by the Hami l ton ian  
vector  field 

H [ ]  = - ~ . ~  + ~ - ~  

is contained in A +. On the other  hand,  the f lowout of  2:_ \ Za is a new lagrangian,  
which we denote by A_ .  In  fact, assuming, as we may,  that  h 2 -= 1, 

2;_ = {(y, y .  co, co; z v ( y ,  co), z, - z i*y ) :  y �9 S, co �9 S " -  1, z �9 IR\0} , (3.17) 

where v(y ,  co) = 2(09. hy)hy - co. Note  that  v z = 1 and v(y ,  co) = - co iff co. hy = 0, 
i.e, only at Z3. HD can only be tangent  to 22_ if it arises as the image of a vector  

Y.~yy under  the diferential of  the pa ramet r i za t ion  (3.17); but  then 

Y = - ~ = - zv (y ,  co) and co. Y = z, which imply that  v(y ,  co) = - co, which only 
occurs at $3 by the above comment .  Thus,  HD cbl 2;- on 2;-\223, and 
A_ = A[] o(2;_ \223) is a smooth  lagrangian,  intersecting A2 cleanly in codimension 
1. Explicitly, 

A_ = {(y - rv(y ,  co), y . c o  + r, co; z v (y ,  co), ~, --  z i*y ) :  y �9 S, co �9 S " - 1 ,  co .hy  ~e O, 

r �9 IR, z �9 N \ 0 }  . (3.18) 
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We remark here that  A_ is the conormal  bundle of a smooth  hypersurface, 
which we denote by S_.  In  fact, the differential of the projection n from A_ onto  
the spatial variables is 

D(x, t, co) 

D(y, r, co, z) 

j - r j * d y v  - v  - rdo ,  v 0 \ 

) j 'co 1 "* - -  lo~X 0 , 

0 0 I 0 

where j denotes the differential of the inclusion S ~ IR", from which we see that  

rank (drc) = n + r a n k ( j  - rj*drv + j ' co  | v).  (3.19) 

Away  from Sa, v(y, co) 4: - co and the rank of the second term in (3.19) is n - 1; 
thus rank(dn) = 2n - 1 and A_ = N ' S _ ,  for S_ c l R  "+l x S "-~ a smooth  hyper- 
surface. 

N o w  consider the case when the codimension of  S satisfies 1 < k < n. Then Z, 
defined by (3.14), has a conical singularity at $3. We will actually work away from 
a larger set, 

22 ---- {(y, y.co, co; v --zco, z, - -z i*y) :  (y, v ) e N * S ,  coeS " - i ,  

z ~ \ 0 ,  v 'co = 0} . (3.20) 

By the same reasoning as for k = 1, HD ch 2 on 2 \ 2 2 ;  thus, A_ ,  which we define in 
this case to be A[] o ( 2 \ 2 2 ) ,  is a smooth  lagrangian intersecting A2 cleanly in 
codimension 1. Furthermore,  since A+ n A 2 c 2 2 ,  A+ and A_ are disjoint (al- 
though  A + c~/i_ 4: 0.) We can parametrize 2\2;2 and A_ by solving v. (v - 2zco) 

112 

for T, which we can do away from Z2: z = z ( y , v ,  co)=2(v .co  ). Note  

that  Iv - zcol = I~1. Thus, 

2 \ ~  2 : {(y, y.co, co; v - zco, z, - zi*y): (y, v)e N * S \  O, co~ S "-1, v.co :# O} 
(3.21) 

and 

A_ = {(y - rw(y, v, co), y.co, co; v -- "cco, z, - zi*oy): (y, v)e N*S\O,  co~S n-l, 

r e IR, v" co 4: 0} , (3.22) 

Y 
where w(y, v, co) = - - co; note that W 2 = 1. 

z 
When  k = n, so that  S is a finite set of  points in ]R", introducing $3 or  2;2 is 

unnecessary: 2: is smooth,  as is A_ = AD~ S. A + and A_ intersect, however, and we 
will work away from this intersection by using the parametr izat ion (3.22). 

Finally, we note that  for 1 < k < n, A_  is contained in the conormal  bundle of  
a submanifold of  IR "+ 1 x S" -  1 having a conical singularity along S 2. N o t  needing 
this fact below, we will not  describe its structure further. 

Returning now to the second term, Ux (x, t, co), of  the approximate  solution for 
the direct problem, let ( 9 '~ (9cA2  be conic ne ighborhoods  of Z3, 22 or 
( A + ~ A 2 ) n 2  in the cases when k = 1, 1 < k <  n or k =  n, respectively. Let 
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L = A D ~ (9, L' = A cz ~ (-9' be the conic neighborhoods of (9, (9' in T* (~" § 1 x S"-1) 
invariant under the Hamiltonian flow. Then (3.12) becomes 

W F ( u a ) k L  ~ A+ k-) A2 w A _  . (3.23) 

In fact, microlocalizing ul away from L, ul belongs to the sum of the spaces of 
lagrangian distributions associated with the pairs (A2, A+) and (A2, A_). Let 
Z(X, t, co, ~, z, f~) �9 C ~ ( T * ( I R  "+l x S " - l ) \  0) be homogeneous of degree 0 in the 
fiber variables, with Z = 0 on L' and Z - 1 on U. The corresponding pseudodif- 
ferential operator g(x, t, co, Dx, Dr, Do) has the property that [ [ ] -~ ,  )C] is micro- 
locally supported on the annulus L n L 'r Let 

~1 = - [ ] - 1 0 c ( q ' 6 ) ) ;  (3.24) 

then ul - ut is microlocally smooth on U by the above comment. Translating (3.8) 
from conormal to lagrangian language, we find that 

1-n k 
q(x ) .6 ( t  - x .co) �9 I T ,  "+ 2 (A2, A+ ) . (3.25) 

The same is true for )~(q. 6), and since, by [GuU],  the double intersection spaces 
microlocalize, one has x(q" 6) = u + + u- ,  where 

1 - n  k 

u + �9 I T '  " + ~ ( A 2 \ L , A + \ L )  (3.26) 
k + l - .  

u -  �9 I U + T ( A 2 \ L )  

with u • supported microlocally near A2c~A_+. Applying _ [ ] -1  �9 
3 1 

I -~ ' -~ (Ar . (~ , . l •  Ac~) to u § and u- ,  and using Propositions 2.2 and 2.1, 
respectively, we find that 

_ D - l ( u  +) �9 i-"+~21, u+~-i  ( A z \ L , A + \ L )  
k - 2 - n  1 

- D - l ( u  - ) � 9  u+ ~ " - ~ ( A 2 \ L , A _ \ L ) .  (3.27) 

Since the variable t is bounded on A2, by (1.4) we have 

k - 2 - n  
ul �9 I -  2 ( A + \ L )  + I u + T  (A_kL) ,  t >> O, (3.28) 

and thus the approximate solution 

k - 2 - n  
Uo + ui �9 I -"~2~ (A+\L)  + I u + T ( A _ k L ) ,  t >> O, (3.29) 

Furthermore, the analysis shows that WF(u l )  ~ A[] o A2. 
Now let R: g ' ( N " ) ~  g'(IR x S "-~) be the Radon transform 

( R f ) ( s , O ) =  I f ( x ) d a ( x ) ,  (3.30) 
X . O = S  

where de is normalized Lebesgue measure on the hyperplane {x. 0 = s}. Acting in 
the x variable, R is defined on those elements of N'(IR" x IR x S " - i )  having compact 
support in x for each t, co; R is an elliptic Fourier integral operator, R e I (1 -")/2(CR), 
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where CR is the local canonical graph c T*(IR • S "-1 • IR x S "-1 • R n • IR x S " -1 )  
given by 

CR = { (x . O, O, t, co, a, - ai'~(x), ~, D; x, t, co, aO, ~, f2): 

(x,t, co)~]Rn+l• 0esn- l , f f~R\O, ' c~R,~  T ' S " - 1 } .  (3.31) 

The modified (Lax-Phillips) Radon transform [LP],  which maps • 2 _ to C-valued 
distributions, is defined by 

RLp = C , D ~ - ( D s R v o  -- Rv l ) ,  n o d d .  (3.32) 

n-1 n-1 

For  n even one replaces in (3.32) D ~ - b y  ] D j - I .  For  another discussion of the 
time dependent approach to scattering theory and also for a more detailed 
treatment of the odd dimensional case, see [Pe]. 

The scattering kernel can be expressed in terms of RLp and the solution to the 
direct problem (3.5) as follows [MU2]: letting 

n - - 3  

w = D ~ - ( u ( x ,  t, co) - 6(t -- x"  co)), n o d d ,  (3.33) 

one has the relation 

e ( t - s , O ,  c o ) = 6 ( t - s ) |  LP D, co ' t >>0 .  (3.34) 

For  n even one replaces Dt in (3.33) by IDtl. 
Now, acting on the argument u - 5, w and Dtw are pseudodifferential operators 

n - 3  n - 1  
of orders ~ and ~ ,  respectively, and thus 

(~ - 5 | 5)(~ - s, O, co) = F(u - 5 ) ,  (3.35) 

. - 1  

where F e l T ( C R ) .  Furthermore, if we denote the fiber variables in 
T*(IR x S "-1 x l R x S  "-1) and T*(IR "+1 x S  " - l )  by (or, O, r, f2) and (~, v', f2'), re- 
spectively, the symbol of F is an elliptic factor times o- - z'. This is elliptic on the 
region of CR giving rise to the first components in (3.40)1 and (3.40)k, which are 
shown below to be those of interest. 

To deal with the translation-invariance in (3.35), we introduce, for to >> 0, the 
mapping p: IR x S"-  1 x S " -  t ~ IR x S" -  t x IR x S " -  1, p(s, O, co) = (to + s, O, to, co), 
which induces a restriction mapping 

p* . . .~ , ; ( IR  x S " - 1  x ]R x S " - 1 )  .-.,..~'(]R x S " -~  xS,-1). 
Here, ~ denotes those distributions whose wavefront sets are disjoint from the 

1 

normals of p. p* is a Fourier integral operator, p* e U(Cp) ,  where 

Cp = {(s, 0, co, a, O, (2; to + s; 0, to, CO, a, O, t/, 12): 

s e l R ,  O, c o e S " - l , ( a , O , z ,  f2) e T * ( I R x S " - l x S " - l ) \ O } .  (3.36) 

Thus, the scattering kernel can be expressed by means of 

(~ -- 5o | 5)(s, O, 09) = p * F ( u  -- 5 ) .  (3.37) 
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We first examine the right side of  (3.37) applied to the approx imate  solut ion 
Uo + ul;  the compar i son  with p * F ( u - 6 )  will be made  later. Of  course, 
p*F(uo  + Ul - 6) = p * F ( u l ) .  Since CR is a local canonical  graph, by (3.28) we have 

k - 3  

F ( u l )  ~ I -  I (CR o A+ ) + Iu+ T ( C R  o A _  ) . (3.38) 

Applying (3.31) to A+,  we see that  CR o A+ has two components ,  

CR O A + = {(y.co, co, y.co, co; a, - ai* y, - tr, ai* y): y ~ ~R n, go ~ S n- l ,  (7 ~ J R \ 0 }  

u [ - y .co,  - co ,  y .co,  co; a, -ai*- ,oy ,  a, - a i * y ) :  y ~ IR", 

co e S "-1, o- e IR\0} . (3.39) 

Similarly, applying CR to A_ in the cases k = 1 and 1 < k < n, we obtain 

CR~ = {(r -- y v(y,  co), - - v ( y ,  co), y ' co  + r, co; a, --  a i*vy ,  -- a, trt,oy). 

y ~ S, co ~ s n - l , r  E ]R,~7 ~ 1R\0} 

u {(y" v(y, co) - r, v(y, co), y ' o )  + r, co; a, - a i * y ,  a, - ai*y): 

y e S, co e S n - l ,  r e IR, a e ~, \0}  , (3.40)1 

CRo A _  = {(r --  y ' w ( y ,  v, co), - w(y,  v, co), y ' co  + r, co; - z(y,  v, co), zi*wy, z, 

--  zi*y): (y, v) ~ N * S \ O ,  co e S"-  1, v" co * O, r s IR} 

w {(y. w(y, v, co) - r, w(y, v, co), y ' co  + r, co; z(y,  v, co), - zi*y, z, 

- zi*y): (y, v) e N * S \ O ,  co e S n- l ,  V'CO ::~ 0, r e JR} , (3.40)k 

respectively. We also note  that  

{ ( v  v ) 
C R ~  + ~ ] ' y ,  + iv-i,v, co; + [v l ,  + -- I v l i * •  y, O, O : 

Ivl 

(y,  v) ~ N * S \ O ,  z ~ lR, co e S " - 1 } .  (3.41) 

Since it is impossible for bo th  s and t to be >> 0 on the second componen t  of  
C R o A +  in (3.39) and the second componen t  of  C R O A _  in (3.40)1, (3.40)k, the 
appl icat ion of C o to these componen t s  is empty.  Define the peak  lagranoian 

_d+ = CpO CR o A+ = {(0, co, co; a, -- tri*y, a ' y ) :  co ~ S " -1 ,  y ~ IR", a ~ IR\0} 

{(0, CO, CO; a, -- ~'2, ~?): (CO, ~ )  ~ T * s n - I , a  ~ JR\O} 

= N * { s  = 0, 0 = co}, (3.42) 

and the ref lected lagrangian, 

A -  = Coo CR oA_ = {( -- y ' ( v ( y ,  co) + co), v(y ,  co), co; tr, -- tri*vy, ai*y):  

y ~ S, co ~ S " -  1, a ~ N \ 0 }  , (3.43)1 

./i_ = {( - y ' ( w ( y ,  v, co) + co), - w(y ,  v, co), co; z (y ,  v, co), - Zi*wy,  z i*y) :  

(y, v) e N * S \  O, co e S " -1  } , (3..43), 
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for k = 1 and 1 < k < n, respectively. One computes  easily that  the appl icat ion of 
Cp to CR ~ A _  falls under  the transverse intersection calculus. Thus,  f rom (3.38) one 
obtains  

3 ^ k 5 

p , F ( u ~ )  e I - Z ( A +  ) + I ~ + ~ - ~ ( A _ )  . (3.44) 

To  compare  this with the true scattering kernel given by (3.35), set 
= u -  (Uo + u~). Then ~ -  0 for t >> 0 and 

([] + q)O = ([] + q)u --  ( ~  + q)(uo + u l )  

= 0 --  DUo -- q ' u o  --  [Zul  --  q ' u i  

= -- q" u i �9 (3.45) 

Some care needs to be taken in interpret ing the p roduc t  q ' u l .  Let Mq denote 
mult ipl icat ion by q; we will show tha t  Mq is a "pseudodifferential  opera to r  with 
singular symbol"  on IR "§ x S "-1.  In  fact, the Schwartz kernel  of Mq is 

KMq((x, z, co), (x', r', co')) = q ( x ) b ( x  -- x ' ) b ( t  -- t ')6(co -- co') ,  
+k / +kx 

/,~ - - , - -  # - -  I which belongs to I 2 ~ 2)(AT.(~o 1• 1),A~), where As is the f lowout of  
T*( IR  "+1 x S " - l ) l s  = {(x, t, co, 4, t, [2): x e S } ,  

A s  = {(x, t, co, ~ + t/, z, I2; x, z, co, ~, t, f2): (x, t, co, ~, t, f2)e  T*(IR "+l  x S" - I ) ] s ,  

t /e  N *  S } .  (3.46) 

The  resulting opera to r  is defined when acting on distr ibutions v e D ' (R"  § 1 x S " -  z) 
such that  A s  ~ W F  (v) c~ (0) = r where (0) is the 0-section. F r o m  (3.46), we see that  
Mqv is defined for v such that  W F ( v ) n A 1  = r If  K c T*(R "+1 x S" -1 ) \ (0 )  is 
a closed, conic set disjoint f rom A1, and H~ consists of those elements of  the local 
Sobolev space H[o~ with wave front set contained in K, it follows f rom the results of 
[ G U ]  that  

Mq: H~: ~ H { o ~  (~+k)+ . (3.47) 

To  deal with v's with wavefront  set near  A~, we make  use of the results 
of Sect. 1. In t roduce  zeroth order  pseudodifferential  opera tors  x j ( D ) =  
Zj(x,  t, co, D~, D~, D,o), 1 < j < 4, on R "§ • S " - l ,  forming a microlocal  part i t ion of 
unity, such that  z I ( D )  is suppor ted  on a ne ighborhood  ~K of AI ,  where K is as 
above;  z2(D) is suppor ted  near  ( A + w A _ ) \ L ;  z3(D) is suppor ted  near  L; 

- k + l - n  

and z4(D) is such that  ~ =  1 Zi(D) = I. Now,  since q(x )6 ( t  - x ' c o ) e  I " - ~ ( A 2 )  
away  from A 4, 

z l  (D )ua = - z~ (D ) [] - ~ . . . .  u+ k ~ -  "" " [ q o ) e i  " L/12) = Iu -2 ($2 )  

and is suppor ted  near  A1. By L e m m a  1.3, 
3 - k  

M q z l u l  e l U ' u + k - 2 ( S 1 ,  $2) = 12"+3k-23- ' '  -"+ ~ (A1, A2) ,  

s ince / l  - 2 < - k ,  2# - 2 < - k .  By (3.27), 
_ . ~ ! , . . + k - 2  i ~ , + k - 2 - . ,  _• 

Zz(D)ul e l  2 (A2, A+)  + 2(A2, A_)  
_k+! , . ~ k - 3  

= I 2 ' ' -  2 ( S + ,  S 2 )  + I ~ - L - I ( S _ ,  $2) �9 
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Applying Lemma 1.5 with Y1 = S~, Y2 = 82 and Y+ = S+ or S_, we obtain 
k_~l - - ~ + 1 + , 2 ,  + ~ - = - ~  o 

MqZzU 1 e l  'u+-~2+(u+k)+'*(S+, $ 2 )  + I 2 k ~ 2 J+.~' ( S + ,  $ 2 )  

§ I " -  1, - 1 + ( u + k ) + . . ( S _ ,  $ 2  ) nl - I " -  a + ( u -  1 +k) . . . .  o ( s _ ,  $2 ) 
§ i .  ' _k+ 1.a./'/~+ 3k-3"~ 

2 - t  2 I+.~(St,S2)§ IU, U-I+(-I+k)+,~(S~,S2), 

where (x + k)+,~ = (x + k)+ + eft,-k for any e > 0. 
Since z3(D)u~eH]~ ~ for some soeR, mqz2ulEH]~ -("+k)+ by (3.47), and 

WF(MqZzUt)~L by (3.46) and the definition of L. Finally, Mqz4ule 
I-k+(u+k)+'"(S1,S2); this latter space also contains Mq)~lul, since 
- k  + (~ + k)+,~ > ~. 

Having described the right side of (3.45), we now apply the forward funda- 
+ k - n  ,+1. 

mental solution [] - 1 �9 �9 M ~t, M T , ~ t  2 _ to both sides. Since I ' ( S •  $ 2 )  = I ( A 2 ,  A + ) ,  
(2 .10)  implies that 

[] -1: IM, M'(S• $2  ) ..~ I~t-I,M'-I(S+, $2 ) . 

Furthermore, [] -a acts on IM'M'(SI, $2) as a pseudodifferential operator of order 
- 2 .  Finally, [] -1 : H ~ ~ ,,ra~+11oo . Thus, (3.45) becomes 

(I + [] -1Mq)gtsI -g-~-'u+-~E+(U+k)+'"(S+' $2) + I -g~-+(zu+ k2a~)+'~'- 1.(S+, $2) 

§ I u-z,-2+(u+k)+,"(S_, 82) § IU-2+(u -l+k) .... - I ( S _ ,  82) 
_ k + l + [ ,  + 3 k - 3 ~  

§  u-2, 2 t"  2 . J + . ~ ( S l , S 2 ) §  l # - 2 , # - l + ( - l + k ) + . ~ ( S l , S 2 )  

+ I - k - 2 + ( / a + k )  . . . .  t t - 2 + k ( s 1 ,  $ 2 )  -t- HiS ~  , (3.48) 

with the wavefront set of the last term contained in L. Given the AD-invariant 
neighborhood L and any integer N > 1, we can find another Aa  invariant neigh- 
borhood, LN~L such that WF(([]-IMq)U)(LN)c L. Making all of the above 
microlocalizations away from LN, and applying ~iUo 1 ( - 1 ) i (  [ ] -  1Mq)J to both 
sides of (3.48), one sees using Lemmas 1.2, 1.3, 1.4 and 1.5 that, since p < 1 - k, the 
right side of (3.48) is stable under the application of ( [] - 1Mq)~ for 0 < j < N - 1. 
Thus, ( I  + ( -  1)N( [] - 1Mq)N)zi belongs to the space on the right side of (3.48), and 
the wavefront set of the Sobolev space term is contained in L. Now apply p*R to 
both sides; using the mapping properties of R and p*, noting that Co o A~ = 0 for 
t >> 0 (from (3.36)), and applying the standard Sobolev restriction theorem for 
hypersurfaces, we find that 

7 ^ +_k_9 ^ u~o+~N+,-~ (3.49) p*FgteI-~(A+) + I u 2 4 ( A _ )  _~_ "aloe _ , 

where ~i~H~ ~ and 6 = 1 - (p + k)+ > 0. 
Taking N --* + oe, we thus have shown 

Theorem 3.1. Microlocally away from s 
_~_ ^ 

~(s, O, co) - p*F(uo + u l )6I  ~(A+)+ + IU+~-~(zi_) .  (3.50) 
1 ^ ^ + k _ 5  ^ ^ 

Thus, ~614(A+\L) + I ~ ~ 4(A_\L), and hence 171_ and the principal symbol 
tT(~a)l~_ are determined by ~. 
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4. Determination of S and a(q) 

We now examine how the leading singularity of q(x) is determined by the sin- 
gularities of r 8, co) and its restriction to various submanifolds of 
]R • S" -a  • S"-1.  We start by showing that ~(s, 8, co) determines the surface, S. By 
Theorem 3.1, it suffices to show that  S is determined by A_ ,  where A_ is given by 
(3.43)1 and (3.43)k in the cases where the codimension of S is 1 and greater than 1, 
respectively. For  simplicity, cons ide r  k = 1 first; suppose there are two hyper-  
surfaces, S,S, such that  A_ = ~ _ .  Then, by (3.43h, there is a mapping 
37: S • S"-  a ~ g, such that 

{(-37"(~ + co), - 13, oJ; a, -ai*_~y, (ri'37)} 

= { ( - x ' ( v  + co), - v ,  co; a, -ai*-vy,  ai*y)}  , (4.1) 

where f =  f(37(, co), co). Identifying the second (O) coordinates in (4.1) yields 
2(ff~" ~)h-~ - co = 2(hr" ~o)hr - ~o ~ (h-~-co)h-~ = (hy" ~o)hr; since hy and h~ are unit  
vectors, this => 

/7~ = __hr. (4.2) 

Identifying the last (f2) cQmponents in (4.1) yields i'37 = i*y 

37 = Y + Ca(D, Cl = cl(y,  CO) �9 (4.3) 

Finally, comparing the first (s) components ,  we have 

f i ' ( f  + 09) = y ' (v  + co)~f~'(hi 'co)f i ,  = y ' (hr 'co)h,  

by (4.2), g" ( + h r �9 co)( + hr) = y" (h r �9 co)h r ~ by (4.3), (y + cl co)" (hrco)h r = y(h r �9 co)h r. 
Now, hr 'co is not  identically 0 on S x S  "-a, so this ~ ( y + c _ t ~ o ) ' h  r = y . h  r 

caco 'h  r = 0. But again, co 'h  r 7~ 0, so this ~ c a  = 0~37  = y ~ S  = S. 
For  1 < k < n, we repeat the above argument,  substituting (3.43), for (3.43)a. 

Thus, there is a function_(37, ~): (N *S\0)  x S"-  t ~ N ' S \ 0  making the identifica- 
t ion between r and z{_, and we may assume ~(y, co)2= v2. Identifying the 

v 
0-coordinates then yields 2 ( v ' c o ) ~  = 2 (q ' co ) - -  which implies v = +~, z = +~. 

~ 2  ' - -  - -  

The rest of the proof  is the same. 
We next consider the restriction of e(s, 8, co) to submanifolds. Consider  first the 

case of backscattering. 
Let  IB = {(s, 0, co): 8 = --co} ~ IR x S "-1 x S "-a  be the backscattering surface. 

Let jB : IR x S" - a  ~ 113 be the canonical  parametrizat ion,  jB(s, co) = (s, -co ,  co); then 
the pullback operator ,  

j~ :  _@'(]R x S "-a x S " - a ) - ,  @~(]R x S . - a ) ,  

defined on distributions whose wavefronts sets are disjoint from the normals  ofjB, 
n - ~  

is a Four ier  integral operator,  j~  ~ I  4 (CB), where 

C ~ = { ( s ,  co, a,~2;s',O, co,a; ' O,O'):s=s,co' = c o ' = - O ,  

(a, O) = (a', 69, 0 )/N~, _~, , , jB}.  

Let  LE = C~o/~ ~ T*IB\0. 
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Theorem 4.1. Away from LB, 

where 
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- u + ~ + g . . -  
(4.5) 

A~ = { ( -2y  "hy, hr; rr, r y e S ,  rr elR\0} 

{(2y'hy, -hy;  or, ~i*-h~,y): y e S ,  ~relR\0} (k = 1) (4.6h 

f(2 } A ~ =  - y.~vl,-~vl, lvl, lvli y : ( y , v ) ~ N * S \ O ,  l < k < n - 1 .  (4.6)k 

,,+_k _5~_n-~ ^ 
Proof. ~ I B = jr~ (~) e I"  2 , -  �9 (C~ o A_ ) by the transverse intersection calculus, 
provided a)/1_ ch T*(]Rx S " - I  x S"-I)]B and b)/1_ n N * ~ l  = 0; both of these, 
together with (4.6)i, (4.6)k follow from (3.43)1, (3.43)k, respectively. Q.E.D. 

Corollary 4.2. ~l~ determines S. 

Proof. We deal with the case k = 1, the case 1 < k < n being handled similarly. By 
Theorem 4.1, al~ is, microlocaUy away from L~, a Fourier integral distribution 
associated with a lagrangian An ~ T*IB\0, invariant under the canonical involu- 
tion induced by (s, co) ~ ( - s ,  co). On either component, we see that 

f2 1 
(7 2 sco = i*hyy + (x 'hr)h  r = y .  

Thus, S =  --~sco:(s ,  CO, G Q ) s A B .  Q.E.D. 

Now consider a more general manifold of scattering data, 1D = 
{(s, 0, co): 0 = qS(co)}, where q~ = S " - i  ~ S € is smooth. By (3.43)1, at a point of 
A_ c~ T*(1R x S ~-i x Sn-i), we must have 

o r  

Letting 

co - 2 (co. h,)  h,  = ~ (co) 

1 ( c o - , ~ ( c o )  ) 
II co - qS(co) ll IIco - O(co)II = ( c o ' h , ) h y .  

co - ~(co) 
~0(co) - (4 .8)  

II co - ~(co)II 

under the assumption qS(co) =~ co, Vco e S n- l, we thus have 

~0(co) = + hy .  

We now assume that @ has a smooth left inverse, at least on the image of 
the Gaussian map of S. Then the image of /i_ under intersection with 
T*(IR x S n-1 x Sn-i)lD and modding out by N*ID is (in (s, co, o, f2) coordinates), 

Am = { ( - 2 ( q ) - l (  +_hy)'hy)y'hy), (#-l(___hy); rr, rri*-l(+h,): y e S ,  ~relR\0}. (4.9) 



Recovering Singularities of a Potential 571 

Q 
As in the proof  of Corol lary 4.2, we can reconstruct  y e S from -- "* = l r  , the 

O" 

projection of y onto  ~p-i(+__hr)• and the dot  product  of y with any vector not in 
q~-l(+_ hr)Z; but, if q~-1 (v) 'v  4= 0 for all v in the image of the Gauss• map of S, 
then this is determined by the S component .  

We thus have established, for k = 1, 

Corollary 4.3. I f ID = {(s, 0, o9): 0 = ~b(o9)} with 

a) r (o9) + o9, Vw e S "- 1, 
- r 

b) ~p(o9) - a diffeomorphism, 
II o9 = r  

c) tp - i (v ) ' v  ~ O, v e Gauss• image of  S, then c~l~ determines S. 

Finally, we note  that  Corol lary 4.3 holds for D of the form 
ID = {(s, 0, ~o): 0 = ~b(s, o9)}, satisfying 

a') q)(s, o9) +- o9, Vo9eS " - i  

b') ~0(s, ") - �9 - q~(s, ") is a diffeomorphism S " - I  --*S " - I  for all s e N .  
I1" - r  ")l l  

c') r  v) 'v  =~ O, VveGauss ian  image, s e N .  

We leave the statement of Corol lary 4.3 for 1 < k < n to the interested reader. 
Finally, we show that  for determined sets ID of scattering data  as above, the 

principal symbol a(q)lN*s is determined by the principal symbol a(ctl~)lA~. For  
simplicity, we work with ID --]B, the backscattering. In fact, by Theorem 3.1, the 
principal symbol of ct on A _ \ L  is the same as that  of p *F (ui) = - p * F D ~ a (q .  6). 
Microlocally near S _ ,  the principal symbol of q(x)" 6(t - x" o9) (in I ~ -~(A2)) is 

a(q)(x ,  v)" l(z) 

in the coord ina te so f  (3=13). By Proposi t ion 2.1, the symbol of [] - ~ ( q" 6) at a point  
(x, z, o9; 4, z, t2)e  A_ \ L  is propor t ional  (by a( [ ] -  ~)) to the symbol of q" 6 at that  
point  of S_  on the same bicharacteristics. Since the Fourier  integral operators  
F, p* and j~  are elliptic, the symbol 

a(ctlB)(+ 2y 'hy ,  +_hr; a, ai*hyy) (k = 1) (4.10)i 

o r  

a(elm) - 2 y ' ~ - ~ , ~ ;  Ivl, Ivli y (1 < k < n) (4.10)k 

is propor t ional  to a(q)(y ,  v); since S_  \Z2 is dense in Z _ ,  we can recover a(q) on all 
of N *S \0. 
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